
# 256Kx16 HIGH SPEED ASYNCHRONOUS CMOS STATIC RAM with LATCHED ADDRESS & ECC

#### PRELIMINARY INFORMATION MARCH 2017

#### **KEY FEATURES**

- · High-speed access time: 12ns, 15ns
- Single power supply
  - 2.4V-3.6V VDD
- Ultra Low Standby Current with ZZ# pin
  - IZZ = 30uA (typ.)
- Error Detection and Correction with optional ERR1/ERR2 output pin:
  - ERR1 pin indicates 1-bit error detection and correction.
  - ERR2 pin indicates multi-bit error detection
- ALE# pin to latch Address & CS# signals.
- Industrial and Automotive temperature support
- Lead-free available

#### **FUNCTIONAL BLOCK DIAGRAM**



The *ISSI* IS61/64WV25616LEBLL are high-speed, low power, 4M bit Latched static RAMs organized as 256K words by 16 bits. It is fabricated using *ISSI*'s high-performance CMOS technology and implemented ECC function to improve reliability.

This highly reliable process coupled with innovative circuit design techniques including ECC (SEC-DED: Single Error Correcting-Double Error Detecting) yields high-performance and highly reliable devices.

When CS# is High (deselected), the device assumes a standby mode at which the power dissipation can be reduced down with CMOS input levels. Especially Ultra Low Standby Power at Snooze mode with ZZ# Low.

ALE# pin enables Address and CS# signals to be latched by asserting ALE# Low .

The IS61/64WV25616LEBLL are packaged in the JEDEC standard 48-pin mini BGA (6mm x 8mm), and 44-pin TSOP (TYPE II)

#### **DESCRIPTION**

Copyright © 2016 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and

c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

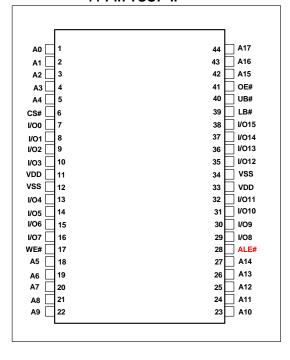


6

# PIN CONFIGURATIONS 48-Pin mini BGA(6mm x 8mm) with ZZ#

3 4 5 6 Α A2 LB# OE# A0 Α1 ZZ# В UB# (1/00 I/O8 А3 Α4 cs# С 1/09 (1/010) A5 A6 1/01 1/02 D (1/011 vss A17 Α7 1/03 (VDD Ε VDD (1/012) NC A16 1/04 vss) F (1/014) (I/O13 A14 A15 1/05 (1/06 G NC A12 A13 WE# 1/07 Н Α9 A10 A11

# 48-Pin mini BGA (6mm x 8mm) with ZZ# and ERR1/2


1

|   | ·       |         |       |              | •      |
|---|---------|---------|-------|--------------|--------|
|   |         |         |       |              |        |
| Α | LB#     | OE#     | (A0)  | A1 A2        | ZZ#    |
| В | (I/O8)  | UB#     | (A3)  | A4 CS#       | (1/00  |
| С | 1/09    | (I/O10) | (A5)  | (A6) (I/O1)  | (I/O2) |
| D | VSS     | (I/O11) | (A17) | A7 (I/O3)    | (VDD)  |
| E | VDD     | (I/O12) | ERR1  | (A16) (I/O4) | VSS    |
| F | (1/014) | (I/O13) | (A14) | A15 (I/O5)   | (1/06) |
| G | (I/O15) | ERR2    | (A12) | A13 WE#      | (1/07) |
| Н | NC      | (A8)    | (A9)  | (A10) (A11)  | ALE#   |
|   |         |         |       |              |        |

## **PIN DESCRIPTIONS**

| A0-A17     | Address Inputs                                                              |
|------------|-----------------------------------------------------------------------------|
| I/O0-I/O15 | Data Inputs/Outputs                                                         |
| CS#        | Chip Enable Input                                                           |
| OE#        | Output Enable Input                                                         |
| WE#        | Write Enable Input                                                          |
| LB#        | Lower-byte Control (I/O0-I/O7)                                              |
| UB#        | Upper-byte Control<br>(I/O8-I/O15)                                          |
| ERR1       | 1-bit Error Detection and Correction Signal                                 |
| ERR2       | 2-bit ERR Detection Signal                                                  |
| ZZ#*       | Power Sleep Mode. Ultra Low Standby current when Low.                       |
| ALE#       | Address, CS# Latch Enable. Address, CS# latched on the falling edge of ALE# |
| NC         | No Connection                                                               |
| VDD        | Power                                                                       |
| VSS        | Ground                                                                      |

## 44-Pin TSOP-II



#### Notes:

1. ZZ# pin is internally pulled HIGH.



#### **FUNCTION DESCRIPTION**

Latched SRAM is the SRAM, which can latch Address/CS# inputs via ALE# pin. The address/CS# inputs will be latched when ALE# is Low, so the host could access another bus (Address/CS#) for the remaining operation period.

## ADDRESS LATCH ENABLE (ALE#) FUNCTION

When Address Latch Enable signal (ALE#) is High, latch is transparent, and external address and CS# signals go through Address and CS# path to access memory cell array, and the device acts like normal Asynchronous SRAM. When Address Latch Enable signal (ALE#) is Low, external address and CS# signals are latched, and those external signals are getting isolated from internal device (all other signals are not latched).

Memory controller does not have to maintain external address and CS# signals after ALE# goes Low during entire operation cycle, which could improve effective operation cycle time.

Also it could reduce potential glitch problem to achieve stable operation.

#### **WRITE MODE**

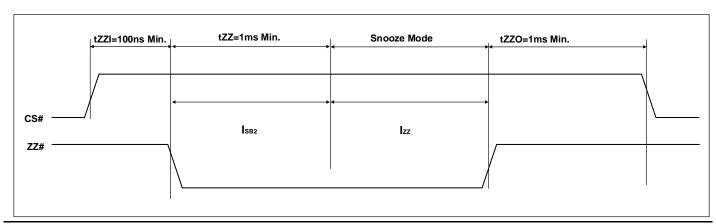
Write operation issues with Chip Select (CS#) Low and Write Enable (WE#) Low. The input and output pins (I/O0-15) are in data input mode. Output buffers are closed during this time even if OE# is Low. UB# and LB# enables a byte write feature. By enabling LB# Low, data from I/O pins (I/O0 through I/O7) are written into the location specified on the address pins. And with UB# being Low, data from I/O pins (I/O8 through I/O15) are written into the location.

#### **READ MODE**

Read operation issues with Chip Select (CS#) Low and Write Enable (WE#) High. When OE# is Low, output buffer turns on to make data output. Any input to I/O pins during READ mode is not permitted. UB# and LB# enables a byte read feature. By enabling LB# Low, data from memory appears on I/O0-7. And with UB# being Low, data from memory appears on I/O8-15. OE# is Asynchronous pin to control output time.

In the READ mode, output buffers can be turned off by pulling OE# High. In this mode, internal device operates as READ but I/Os are in a high impedance state. Since device is in READ mode, active current is used.

#### **STANDBY MODE**


Device enters standby mode when deselected (CS# HIGH). The input and output pins (I/O0-15) are placed in a high impedance state. The current consumption in this mode will be ISB1, or ISB2.

#### **SNOOZE MODE**

Device enters Snooze mode from Standby mode when asserting ZZ# Low, tZZI (100ns Min) after CS# High. Upon assertion of ZZ# Low, the device enters Snooze mode from Standby mode after tZZ (1ms Min.). During Snooze mode, the device must remain standby mode (CS# High), and ZZ# must remain asserted Low. Snooze mode can minimize Standby power consumption.

To exit Snooze mode, ZZ# must be de-asserted (High). The device returns to Standby mode from Snooze mode and CS# can be asserted Low, tZZO (1ms Min.) after de-assertion of ZZ# High.

#### **SNOOZE MODE WAVEFORM**





#### **ERROR DETECTION AND ERROR CORRECTION**

- Independent ECC per each byte
  - detect and correct 1-bit error per byte or detect multi-bit error per byte
- Optional ERR1 output signal indicates 1-bit error detection and correction
- Optional ERR2 output signal indicates multi-bit error detection.
- Controller can use either ERR1 or ERR2 to monitor ECC event. Unused pins (ERR1 or ERR2) can be left floating.
- Better reliability than parity code schemes which can only detect an error but not correct an error
- Backward Compatible: Drop in replacement to current in industry standard devices (without ECC)

## **ERR1, ERR2 OUTPUT SIGNAL BEHAVIOR**

| ERR1   | ERR2   | DQ pin     | Status                  | Remark                                                                                        |
|--------|--------|------------|-------------------------|-----------------------------------------------------------------------------------------------|
| 0      | 0      | Valid Q    | No Error                |                                                                                               |
| 1      | 0      | Valid Q    | 1-Bit Error only        | 1-bit error per byte detected and corrected                                                   |
| 0      | 1      | In-Valid Q | Multi-Bit Error<br>only | No 1-bit error. Multi-bit error per byte detected (out of 2 bytes)                            |
| 1      | 1      | in-valid Q |                         | 1-bit error detected and corrected at one byte, and multi-bit error detected at another byte. |
| High-Z | High-Z | Valid D    | Non-Read                | Write operation or Output Disabled                                                            |

### TRUTH TABLE (ALE# IS HIGH)

| Mode            | CS# | ZZ# <sup>(1)</sup> | WE# | OE# | LB# | UB# | 1/00-1/07 | I/O8-I/O15 | VDD Current                         |
|-----------------|-----|--------------------|-----|-----|-----|-----|-----------|------------|-------------------------------------|
| Not Coloated    | Н   | Н                  | Х   | Х   | Х   | Х   | High-Z    | High-Z     | I <sub>SB1</sub> , I <sub>SB2</sub> |
| Not Selected    | Н   | L                  | Х   | Х   | Х   | Х   | High-Z    | High-Z     | I <sub>ZZ</sub>                     |
| Output Disabled | L   | Н                  | Н   | Н   | L   | Х   | High-Z    | High-Z     | ICC,ICC1                            |
| Output Disabled | L   | Н                  | Х   | Х   | Н   | Н   | High-Z    | High-Z     | ICC,ICC I                           |
|                 | L   | Н                  | Н   | L   | L   | Н   | DOUT      | High-Z     |                                     |
| Read            | L   | Н                  | Н   | L   | Н   | L   | High-Z    | DOUT       | ICC,ICC1                            |
|                 | L   | Н                  | Н   | L   | L   | L   | DOUT      | DOUT       |                                     |
|                 | Ш   | Н                  | L   | Х   | L   | Н   | DIN       | High-Z     |                                     |
| Write           | L   | Н                  | L   | Х   | Н   | L   | High-Z    | DIN        | ICC,ICC1                            |
|                 | L   | Н                  | L   | Х   | L   | L   | DIN       | DIN        |                                     |

#### Notes:

1. ZZ# pin can be left floating because it is internally pulled HIGH.



## **ABSOLUTE MAXIMUM RATINGS AND OPERATING RANGE**

#### ABSOLUTE MAXIMUM RATINGS(1)

| Symbol          | Parameter                            | Value                          | Unit |
|-----------------|--------------------------------------|--------------------------------|------|
| Vterm           | Terminal Voltage with Respect to VSS | -0.5 to V <sub>DD</sub> + 0.5V | V    |
| V <sub>DD</sub> | V <sub>DD</sub> Related to VSS       | -0.3 to 4.0                    | V    |
| tStg            | Storage Temperature                  | -65 to +150                    | °C   |
| PT              | Power Dissipation                    | 1.0                            | W    |

#### Notes:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

#### PIN CAPACITANCE (1)

| Parameter                 | Symbol           | Test Condition                                     | Max | Units |
|---------------------------|------------------|----------------------------------------------------|-----|-------|
| Input capacitance         | CIN              | T 25°C t 1 MHz \/ \/ (tvm)                         | 6   | pF    |
| DQ capacitance (IO0–IO15) | C <sub>I/O</sub> | $T_A = 25$ °C, $f = 1$ MHz, $V_{DD} = V_{DD}(typ)$ | 8   | pF    |

#### Note

1. These parameters are guaranteed by design and tested by a sample basis only.

#### **OPERATING RANGE**(1)

| Range           | Ambient<br>Temperature | PART NUMBER         | SPEED (MAX) | VDD         |
|-----------------|------------------------|---------------------|-------------|-------------|
| Commercial      | 0°C to +70°C           | <br>                | 12 ns       | 2.4V - 3.6V |
| Industrial      | -40°C to +85°C         | - ISOTW V250TOLEBLE | 12 ns       | 2.4V - 3.6V |
| Automotive (A1) | -40°C to +85°C         | IS64WV25616LEBLL    | 12 ns       | 2.4V - 3.6V |
| Automotive (A3) | -40°C to +125°C        | IS64WV25616LEBLL    | 12 ns       | 2.4V - 3.6V |

#### Note:

I. Full device AC operation assumes a 100 μs ramp time from 0 to V<sub>DD</sub>(min) and 200 μs wait time after V<sub>DD</sub> stabilization.

#### THERMAL CHARACTERISTICS (1)

| THE KIND IE OF DAY OF ERROTTOO                               |                   |        |       |  |
|--------------------------------------------------------------|-------------------|--------|-------|--|
| Parameter                                                    | Symbol            | Rating | Units |  |
| Thermal resistance from junction to ambient (airflow = 1m/s) | $R_{\theta JA}$   | TBD    | °C/W  |  |
| Thermal resistance from junction to pins                     | R <sub>θ</sub> JB | TBD    | °C/W  |  |
| Thermal resistance from junction to case                     | Rejc              | TBD    | °C/W  |  |

#### Note:

1. These parameters are guaranteed by design and tested by a sample basis only.



## AC TEST CONDITIONS (OVER THE OPERATING RANGE)

| Parameter                                          | Unit<br>(2.4V~3.6V)           |
|----------------------------------------------------|-------------------------------|
| Input Pulse Level                                  | 0.4V to V <sub>DD</sub> -0.3V |
| Input Rise and Fall Time                           | 1.0ns                         |
| Input and Output Timing and Reference Level (VREF) | V <sub>DD</sub> /2            |
| Output Load Conditions                             | Refer to Figure 1 and 2       |

## **OUTPUT LOAD CONDITIONS FIGURES**

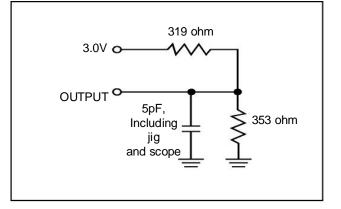
Figure1

Zo = 50 ohm

Output

So ohm

W—O VDD/2


30 pF,

Including

jig

and scope

Figure2





#### DC ELECTRICAL CHARACTERISTICS

## IS61(64)WV25616LEBLL DC ELECTRICAL CHARACTERISTICS-I (OVER THE OPERATING RANGE)

#### $VDD = 2.4V \sim 3.6V$

| Symbol                         | Parameter           | Test Conditions                                           | Min. | Max.                  | Unit |
|--------------------------------|---------------------|-----------------------------------------------------------|------|-----------------------|------|
| V <sub>OH</sub>                | Output HIGH Voltage | $V_{DD} = Min., I_{OH} = -1.0 \text{ mA}$                 | 1.8  | _                     | V    |
| Vol                            | Output LOW Voltage  | V <sub>DD</sub> = Min., I <sub>OL</sub> = 1.0 mA          | _    | 0.4                   | V    |
| V <sub>IH</sub> <sup>(1)</sup> | Input HIGH Voltage  |                                                           | 2.0  | V <sub>DD</sub> + 0.3 | V    |
| V <sub>IL</sub> (1)            | Input LOW Voltage   |                                                           | -0.3 | 0.8                   | V    |
| <sub>LI</sub> (2)              | Input Leakage       | VSS < V <sub>IN</sub> < V <sub>DD</sub>                   | -1   | 1                     | μA   |
| ILO                            | Output Leakage      | VSS < V <sub>IN</sub> < V <sub>DD</sub> , Output Disabled | -1   | 1                     | μΑ   |

#### Notes:

- VIL(min) = -0.3V DC; VIL(min) = -2.0V AC (pulse width 2.0ns). Not 100% tested.
   VIH (max) = VDD + 0.3V DC; VIH(max) = VDD + 2.0V AC (pulse width 2.0ns). Not 100% tested.
- 2. Input Leakage for ZZ# pin is +/-10uA because it is internally pulled HIGH.

## POWER SUPPLY CHARACTERISTICS-II FOR POWER (OVER THE OPERATING RANGE)

| Symbol | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Test Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -12<br>Max. | -15<br>Max. | Unit |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|------|
|        | V Dynamia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Com.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |             |      |
| ICC    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $V_{DD} = MAX, I_{OUT} = 0 \text{ mA, } f = f_{MAX}$ $V_{DD} = MAX, I_{OUT} = 0 \text{ mA, } f = 0$ $V_{DD} = MAX, V_{IN} = V_{IH} \text{ or } V_{IL}$ $CS\# \ge V_{IH}, f = 0$ $V_{DD} = MAX, CS\# \ge V_{DD} - 0.2V$ $V_{IN} \ge V_{DD} - 0.2V, \text{ or } V_{IN} \le 0.2V, f = 0$ $V_{DD} = MAX, CS\# \ge V_{DD} - 0.2V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ind.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70          | 60          | mΑ   |
| 100    | ICC Operating Supply Current $V_{DD}$ Dynamic Operating Supply Current $V_{DD}$ = MAX, $I_{OUT}$ = 0 mA, $f$ = $f_{MAX}$ CC1 Operating Supply Current $I_{OUT}$ = 0 mA, $I_{OUT}$ = 0 mAX, | Auto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75          |             |      |
|        | Ourient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Grade         Max.         Max.           Com.         60         55           Ind.         70         60           Auto.         80         75           Typ. (2)         40           Com.         15         60           Ind.         20         80           Auto.         30         110           Com.         25         25           Ind.         30         30           Auto.         40         40           Com.         15         15           Ind.         20         20           Auto.         30         30           Typ. (2)         10           Com.         60         60           Ind.         80         80 | 0           |             |      |
|        | Operating Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Voc - MAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Com.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15          | 60          |      |
| 10.0.1 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ind.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80          | mΑ          |      |
|        | Ourient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1001 – 0 111/1, 1 – 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Auto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 110         |      |
|        | TTI Standby Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $V_{DD} = MAX$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Com.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25          | 25          |      |
| ISB1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ind.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30          | 30          | mΑ   |
|        | (TTE inputo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CS# ≥ V <sub>IH</sub> , f = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Auto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40          | 40          |      |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Com.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15          | 15          | - mA |
| ICDO   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ind.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20          | 20          |      |
| ISBZ   | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Auto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30          | 30          |      |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Typ. <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10          |             |      |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V MAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Com.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60          | 60          |      |
| 177    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , and the second | Ind.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80          | 80          | uA   |
| الكك   | Current<br>(CMOS Inputs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ZZ# ≤ 0.2V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Auto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110         | 110         |      |
|        | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $V_{IN} \ge V_{DD} - 0.2V$ , or $V_{IN} \le 0.2V$ , f = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Typ.(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30          |             |      |

#### Notes:

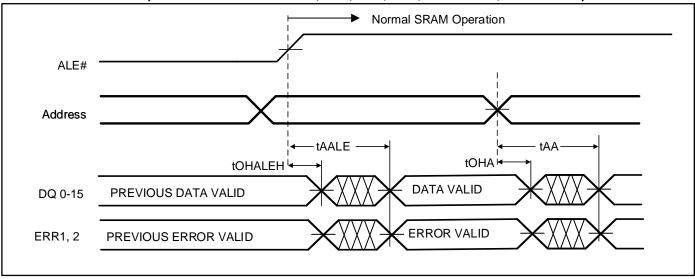
- 1. At f = fMAX, address and data inputs are cycling at the maximum frequency, f = 0 means no input line change.
- 2. Typical values are measured at VDD = 3.0V, TA = 25 °C and not 100% tested.



## AC CHARACTERISTICS (OVER OPERATING RANGE)

#### **READ CYCLE AC CHARACTERISTICS**

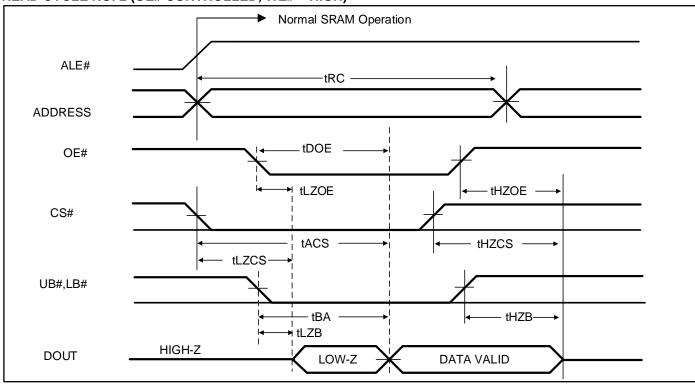
| Davamatar                     | Comple of | -1: | 2 <sup>(1)</sup> | -1  | 15 <sup>(1)</sup> | :4   | notes |
|-------------------------------|-----------|-----|------------------|-----|-------------------|------|-------|
| Parameter                     | Symbol    | Min | Max              | Min | Max               | unit |       |
| Read Cycle Time               | tRC       | 12  | -                | 15  | -                 | ns   |       |
| Address Access Time           | tAA       | -   | 12               | -   | 15                | ns   |       |
| Output Hold Time              | tOHA      | 3   | -                | 3   | -                 | ns   | 4     |
| CS# Access Time               | tACS      | -   | 12               | -   | 15                | ns   |       |
| OE# Access Time               | tDOE      | -   | 6                | -   | 8                 | ns   |       |
| OE# to High-Z Output          | tHZOE     | -   | 6                | -   | 8                 | ns   | 2     |
| OE# to Low-Z Output           | tLZOE     | 0   | -                | 0   | -                 | ns   | 2     |
| CS# to High-Z Output          | tHZCS     | -   | 6                | -   | 8                 | ns   | 2     |
| CS# to Low-Z Output           | tLZCS     | 3   | -                | 4   | -                 | ns   | 2     |
| UB#, LB# Access Time          | tBA       | -   | 6                | -   | 8                 | ns   |       |
| UB#, LB# to High-Z Output     | tHZB      | -   | 6                | -   | 8                 | ns   | 2     |
| UB#, LB# to Low-Z Output      | tLZB      | 0   | -                | 0   | -                 | ns   | 2     |
| ALE# HIGH Access Time         | tAALE     | 12  | -                | 15  | -                 | ns   |       |
| ALE# HIGH to Output Hold Time | tOHALEH   | 3   | -                | 4   | -                 | ns   | 3     |
| Address Setup to ALE# LOW     | tASALEL   | 3   | -                | 4   | -                 | ns   |       |
| CS# Setup to ALE# LOW         | tCSALEL   | 3   | -                | 4   | -                 | ns   |       |
| Address Hold from ALE# LOW    | tAHALEL   | 2   | -                | 2.5 | -                 | ns   |       |
| CS# Hold from ALE# LOW        | tCHALEL   | 2   | -                | 2.5 | -                 | ns   |       |
| ALE# High Pulse Width         | tALEP     | 3   | -                | 4   | -                 | ns   |       |


#### Notes:

- 1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of VDD/2, and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 3. tOHALEH is output hold time when ALE# is transitioning to High, and tOHA is output hold time when ALE# stays High and Address is transitioning.

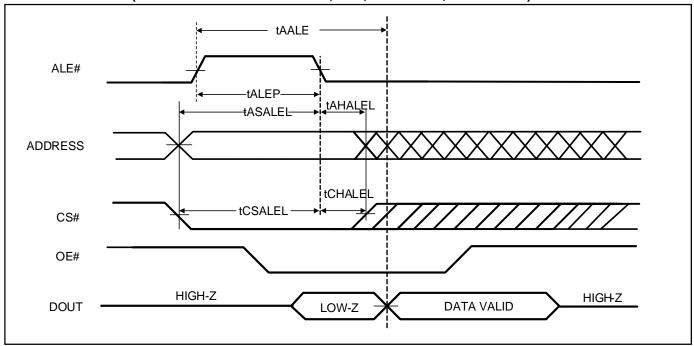


## **Timing Diagram**


## READ CYCLE NO. 1<sup>(1,2)</sup> (ADDRESS CONTROLLED , CS#, OE#, UB#, LB# = LOW, WE# = HIGH)



#### Notes:


- 1. Normal SRAM Operation when ALE# = HIGH
- 2. ERR1, ERR2 signals act like a Read Data Q during Read Operation.

## READ CYCLE NO. 2 (OE# CONTROLLED, WE# = HIGH)





## READ CYCLE NO. 3 (ALE# AND OE# CONTROLLED, UB#, LB# = LOW, WE# = HIGH)



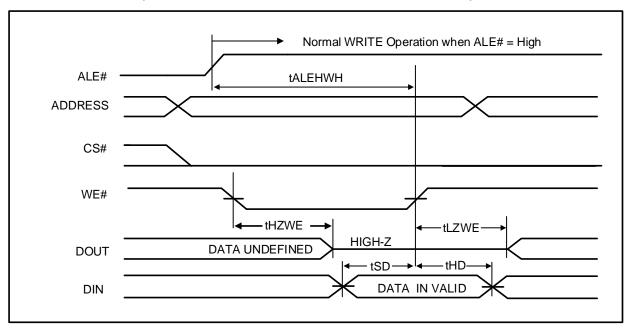
# IS61WV25616LEBLL IS64WV25616LEBLL



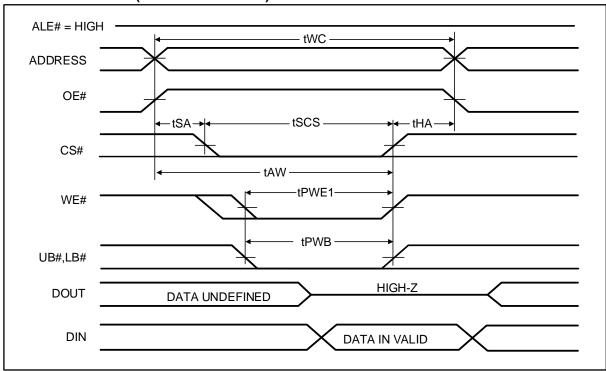
## WRITE CYCLE AC CHARACTERISTICS

| Boromotor                       | Symbol  | -12 <sup>(1)</sup> |     | -15 <sup>(1)</sup> |     |      | mataa |
|---------------------------------|---------|--------------------|-----|--------------------|-----|------|-------|
| Parameter                       |         | Min                | Max | Min                | Max | unit | notes |
| Write Cycle Time                | tWC     | 12                 | -   | 15                 | -   | ns   |       |
| CS# to Write End                | tSCS    | 8                  | -   | 10                 | -   | ns   |       |
| Address Setup Time to Write End | tAW     | 8                  | -   | 10                 | -   | ns   |       |
| UB#,LB# to Write End            | tPWB    | 8                  | -   | 10                 | -   | ns   |       |
| Address Hold from Write End     | tHA     | 0                  | -   | 0                  | -   | ns   |       |
| Address Setup Time              | tSA     | 0                  | -   | 0                  | -   | ns   |       |
| WE# Pulse Width                 | tPWE1   | 8                  | -   | 10                 | -   | ns   |       |
| WE# Pulse Width (OE#=LOW)       | tPWE2   | 12                 | -   | 15                 | -   | ns   | 4     |
| Data Setup to Write End         | tSD     | 6                  | -   | 8                  | -   | ns   |       |
| Data Hold from Write End        | tHD     | 0                  | -   | 0                  | -   | ns   |       |
| WE# LOW to High-Z Output        | tHZWE   | -                  | 6   | -                  | 8   | ns   | 2     |
| WE# HIGH to Low-Z Output        | tLZWE   | 3                  | -   | 4                  | -   | ns   | 2     |
| ALE# HIGH to Write End          | tALEHWH | 8                  | -   | 10                 | -   | ns   |       |
| Address Setup to ALE# LOW       | tASALEL | 3                  | -   | 4                  | -   | ns   |       |
| CS# Setup to ALE# LOW           | tCSALEL | 3                  | -   | 4                  | -   | ns   |       |
| Address Hold from ALE# LOW      | tAHALEL | 2                  | -   | 2.5                | -   | ns   |       |
| CS# Hold from ALE# LOW          | tCHALEL | 2                  | -   | 2.5                | -   | ns   |       |
| ALE# High Pulse Width           | tALEP   | 3                  | -   | 4                  | -   | ns   |       |

#### Notes:

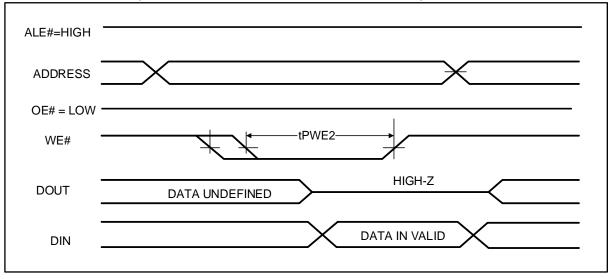

- 1 Test conditions assume signal transition times of 3 ns or less, timing reference levels of VDD/2, and output loading specified in Figure 1.
- 2 Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- The internal write time is defined by the overlap of CS# =LOW, UB# or LB# =LOW, and WE# =LOW. All signals must be in valid states to initiate a Write, but anyone can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.
- falling edge of the signal that terminates the write.

  4 If OE# is low during write cycle, (WE# controlled, CS# = UB# =LB#= LOW, ALE#=HIGH), the minimum Write cycle time for write cycle NO.3 is the sum of tHZWE and tSD.

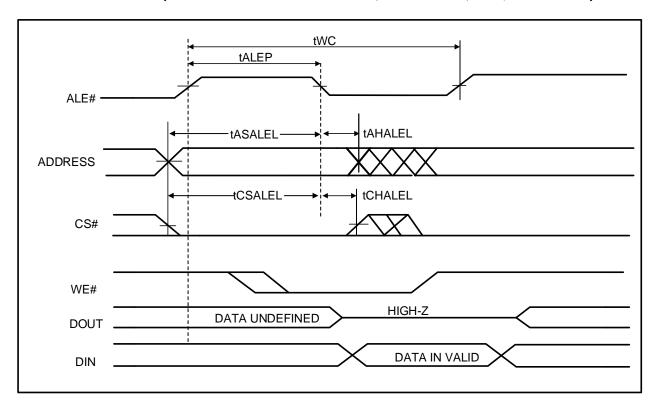



# **Timing Diagram**

## WRITE CYCLE NO. 1 (WE# CONTROLLED, UB#, LB# = LOW, OE# = HIGH)




## WRITE CYCLE NO. 2 (WE# CONTROLLED)



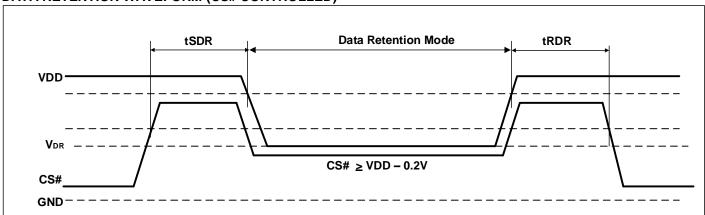



## WRITE CYCLE NO. 3 (WE# CONTROLLED, CS#, UB#, LB# = LOW)



## WRITE CYCLE NO. 4 (ALE# and WE# CONTROLLED, OE# = HIGH, UB#, LB# = LOW)






#### **DATA RETENTION CHARACTERISTICS**

| Symbol                                 | Parameter                                           | Test Condition              | OPTION | Min. | Typ. <sup>(2)</sup> | Max. | Unit |
|----------------------------------------|-----------------------------------------------------|-----------------------------|--------|------|---------------------|------|------|
| $V_{DR}$                               | V <sub>DD</sub> for Data<br>Retention               | See Data Retention Waveform |        | 2.0  |                     | 3.6  | V    |
|                                        |                                                     |                             | Com.   | -    | 10                  | 15   |      |
| I <sub>DR</sub> Data Retention Current | V <sub>DD</sub> = MAX, CS# ≥ V <sub>DD</sub> – 0.2V | Ind.                        | -      | -    | 20                  | mA   |      |
|                                        | Carrona                                             |                             | Auto   | -    | -                   | 30   |      |
| tsdr                                   | Data Retention<br>Setup Time                        | See Data Retention Waveform |        | 0    | -                   | -    | ns   |
| t <sub>RDR</sub>                       | Recovery Time                                       | See Data Retention Waveform |        | tRC  | -                   | -    | ns   |

- If CS# >VDD-0.2V, all other inputs including UB# and LB# must meet this condition.
   Typical values are measured at VDD=3.0V, TA = 25°C and not 100% tested.

## DATA RETENTION WAVEFORM (CS# CONTROLLED)



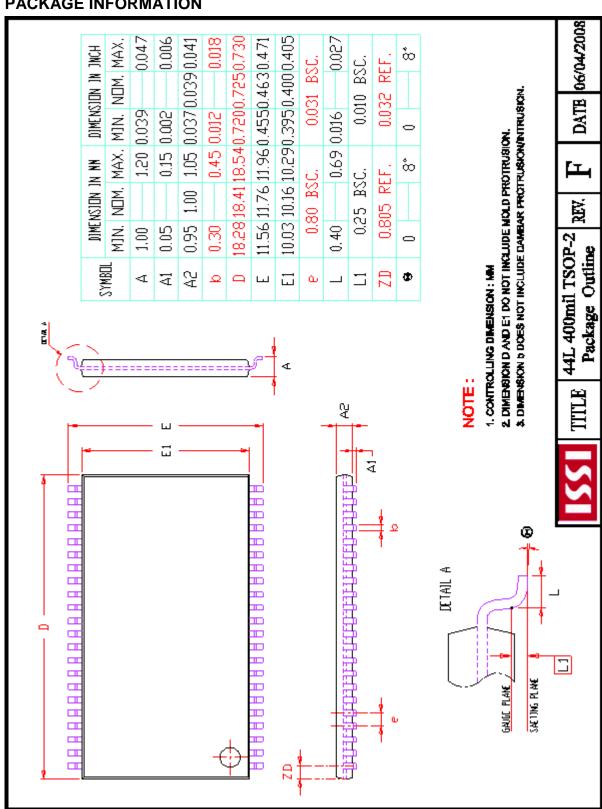


# ORDERING INFORMATION

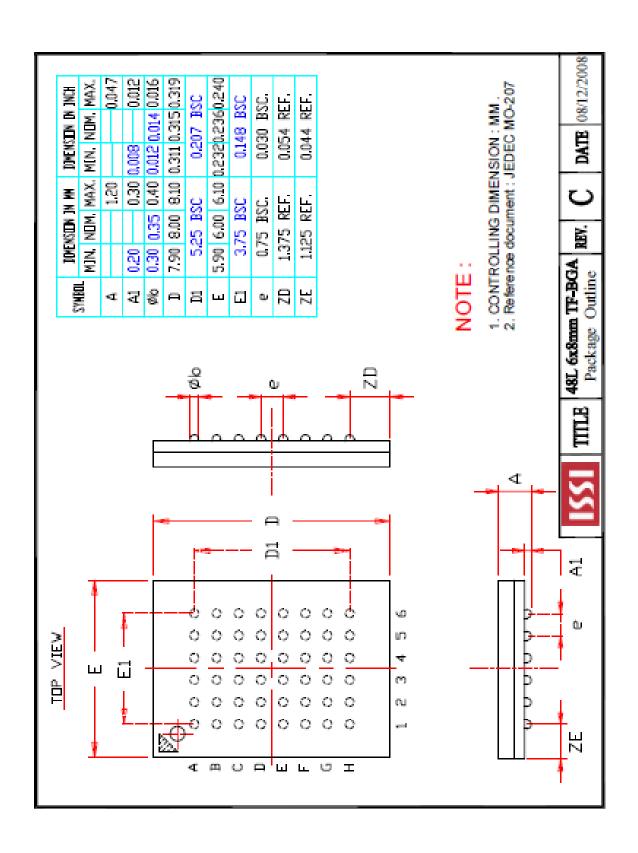
Industrial Range: -40°C to +85°C

| Speed (ns) | Order Part No.          | Package                                         |
|------------|-------------------------|-------------------------------------------------|
| 12         | IS61WV25616LEBLL-12BI   | mini BGA (6mm x 8mm)                            |
| 12         | IS61WV25616LEBLL-12BLI  | mini BGA (6mm x 8mm), Lead-free                 |
| 12         | IS61WV25616LEBLL-12B2I  | mini BGA (6mm x 8mm), ERR1/ERR2 Pins            |
| 12         | IS61WV25616LEBLL-12B2LI | mini BGA (6mm x 8mm), ERR1/ERR2 Pins, Lead-free |
| 12         | IS61WV25616LEBLL-12TI   | TSOP (Type II)                                  |
| 12         | IS61WV25616LEBLL-12TLI  | TSOP (Type II), Lead-free                       |
| 15         | IS61WV25616LEBLL-15BI   | mini BGA (6mm x 8mm)                            |
| 15         | IS61WV25616LEBLL-15BLI  | mini BGA (6mm x 8mm), Lead-free                 |
| 15         | IS61WV25616LEBLL-15B2I  | mini BGA (6mm x 8mm), ERR1/ERR2 Pins            |
| 15         | IS61WV25616LEBLL-15B2LI | mini BGA (6mm x 8mm), ERR1/ERR2 Pins, Lead-free |
| 15         | IS61WV25616LEBLL-15TI   | TSOP (Type II)                                  |
| 15         | IS61WV25616LEBLL-15TLI  | TSOP (Type II), Lead-free                       |

# AUTOMOTIVE RANGE (A1): -40°C TO +85°C


| Speed (ns) | Order Part No.           | Package                                         |
|------------|--------------------------|-------------------------------------------------|
| 12         | IS64WV25616LEBLL-12BA1   | mini BGA (6mm x 8mm)                            |
| 12         | IS64WV25616LEBLL-12BLA1  | mini BGA (6mm x 8mm), Lead-free                 |
| 12         | IS64WV25616LEBLL-12B2A1  | mini BGA (6mm x 8mm), ERR1/ERR2 Pins            |
| 12         | IS64WV25616LEBLL-12B2LA1 | mini BGA (6mm x 8mm), ERR1/ERR2 Pins, Lead-free |
| 12         | IS64WV25616LEBLL-12CTA1  | TSOP (Type II), Copper Leadframe                |
| 12         | IS64WV25616LEBLL-12CTLA1 | TSOP (Type II), Copper Leadframe , Lead-free    |

# AUTOMOTIVE RANGE (A3): -40°C TO +125°C


| Speed (ns) | Order Part No.           | Package                                         |
|------------|--------------------------|-------------------------------------------------|
| 12         | IS64WV25616LEBLL-12BA3   | mini BGA (6mm x 8mm)                            |
| 12         | IS64WV25616LEBLL-12BLA3  | mini BGA (6mm x 8mm), Lead-free                 |
| 12         | IS64WV25616LEBLL-12B2A3  | mini BGA (6mm x 8mm), ERR1/ERR2 Pins            |
| 12         | IS64WV25616LEBLL-12B2LA3 | mini BGA (6mm x 8mm), ERR1/ERR2 Pins, Lead-free |
| 12         | IS64WV25616LEBLL-12CTA3  | TSOP (Type II), Copper Leadframe                |
| 12         | IS64WV25616LEBLL-12CTLA3 | TSOP (Type II), Copper Leadframe, Lead-free     |



## **PACKAGE INFORMATION**





